Решение задачи 4. Вариант 221

Аристарх  Луков‐Арбалетов  совершает прогулку  из  точки A  по  дорожкам  парка. На каждой  развилке  он  наудачу  выбирает следующую  дорожку,  не  возвращаясь обратно.  Схема  дорожек  показана  на рисунке.  Часть  маршрутов  приводит  к поселку S, другие—в поле F или в болото M. Найдите  вероятность  того,  что  Аристарх забредет  в  болото.  Результат  округлите  до
сотых.

 

 

Решение

1) Вероятность того, что мы попадем в ​\( B \)​ равна 0.5 (думаю это понятно, всего путей 2, а нужный нам 1, 1/2=0.5)

Дальше из ​\( B \)​ нас устраивает попасть в ​\( C \)​ и ​\( K \)​ – это благоприятные исходы. Вероятность что мы туда попадем ​\( P(CK)=\frac{2}{4}=0.5 \)​ (всего дорог 4 из B)

Значит вероятность ​\( P(A-B-C,K)=0.5*0.5=0.25 \)

2)  Из ​\( A \)​мы можем попасть в ​\( Q \)​Вероятность​\( P(AQ)=0.5 \)

Из ​\( Q \)​  ведут три дороги, но нас устраивает попасть в ​\( J \)​ – одно благоприятное событие

\( P(Q-J,T)=\frac{1}{3} \)​ (всего дорог 3)

\( P(A-Q-J,T)=0.5*\frac{1}{3} \)

Значит искомая вероятность равна ​\( 0.25+0.5*\frac{1}{3}=0.416 \)

Ответ: 0,42

Оцените решение
Ten-tlt.ru
Вставить формулу как
Блок
Строка
Дополнительные настройки
Цвет формулы
Цвет текста
#333333
Используйте LaTeX для набора формулы
Предпросмотр
\({}\)
Формула не набрана
Вставить