Игральную кость бросили один или несколько раз. Оказалось, что сумма всех выпавших очков равна 4. Какова вероятность того, что был сделан один бросок? Ответ округлите до сотых.
Решение
\( A \)- событие, в сумме 4 очка
\( B \) – сделан 1 бросок
Нужно найти \( P(B|A)=? \)
\( P(B|A)=\frac{P(BA)}{P(A)} \)
\( P(BA)=\frac{1}{6} \) (при 1 броске выпало 4 очка)
\( P(A)=\frac{1}{6}+\frac{3}{6^2}+\frac{3}{6^3}+\frac{1}{6^4} \) (при 1 броске выпало 4 очка или
при 2-х бросках есть 3 благоприятных исхода: 2,2; 1,3; 3,1 или
при 3-х бросках 3 благоприятных события: 1,1,2; 1,2,1; 2,1,1 или
при 4-х бросках 1 благоприятный исход: 1,1,1,1 дальше рассматривать смысла нет, т.к будет больше 4 очков)
Ответ: 0,63