Радиус вписанной в треугольник АВС окружности равен \( \frac{\sqrt{15}}{3} \) . Окружность радиуса \( \frac{5\sqrt{15}}{3\sqrt{3}} \)
касается вписанной в треугольник АВС окружности в точке Т, а также
касается лучей, образующих угол АСВ.
Окружности касаются прямой АС в точках К и М.
А) Докажите, что треугольник КТМ прямоугольный
Б) Найдите тангенс угла АВС, если площадь треугольника АВС равна 153 , а
наибольшей из его сторон является сторона АС.
Решение получилось большим, поэтому я решил его написать на листочках. (чтобы увеличить кликните по фотографии)